KromaTiD Direct, Definitive Genomics

Authors

Matthew McGowan¹, Douglas Brugge², Susan Bailey³, Erin Cross¹, Stephen Kunkel⁴, Christopher Tompkins¹ ¹KromaTiD, Longmont, CO, ²University of Conneticut, Farmington, CT ³Colorado State University, Fort Collins, CO ⁴University of Texas Medical Branch, Galveston, TX

What is dGH?

directional Genomic Hybridization

Beyond Metaphase FISH!

Metaphase FISH

Inversion cannot be visualized in standard metaphase FISH spread dGH

Inversion visualized as a result of unidirectional dGH probe binding

Acknowledgements

KromaTiD gratefully acknowledges Michael Cornforth, UTMB for providing the cell lines. NIH NHGRI for generously supporting the development of dGH SCREEN™

Trawling The Genomic Deeps AI-Empowered High-Throughput dGH SCREEN™

Imaging Thousands of single cell metaphase spreads are imaged using 5-color dGH SCREEN.

Multi-spread

Harlequin

Morphology

Qualification

Images are automatically checked for disqualifying features before downstream processing and analysis.

Segmentation

Qualified spreads are segmented into individual chromosome tiles and assessed for overlap with other objects.

Classification

Chromosome tiles are further classified by number and analyzed for the presence of structural variations.

What's The Catch? Millions of Datapoints

Comparative Aneuploidy

Cell populations from samples with elevated rates of sporadic aneuploidy exhibit significantly different object count distributions compared to normal samples.

Translocation Profiling

Complex Characterization