
dGH SCREEN™ ASSAY SERVICES

www.kromatid.com

Who We Are

A team of expert scientists providing unparalleled genomics tools, services and support.

Your partner for

- Biomarker discovery
- Genotoxicity studies
- Assessment of gene editing-associated errors
- Plasmid manufacturing

Our Products

- Patented directional Genomic Hybridization[™] (dGH[™]) technology
- An extensive collection (>700) of chromosome probes and paints
- Improve the sensitivity and specificity of your FISH assays

Our Services

- FISH assays utilizing our patented Pinpoint FISH[™] and dGH[™] technology
- Plasmid manufacturing (RUO, pre-GMP & cGMP)
- G-banded karyotyping
- Cell culture

What We Provide

Products

Subtelomere

Probes

Centromere <u>Probes</u>

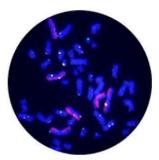
Oncology Probes



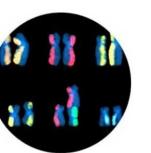
Whole Chromosome

<u>Paints</u>

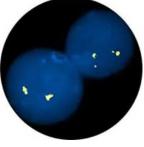
dGH Cell Prep <u>Kit</u>


Cell Culture

Services



Services


G-banding Services

dGH in-Site™ Targeted Assays

dGH SCREEN™ **Unbiased Assays**

Pinpoint FISH™ **Assay Services**

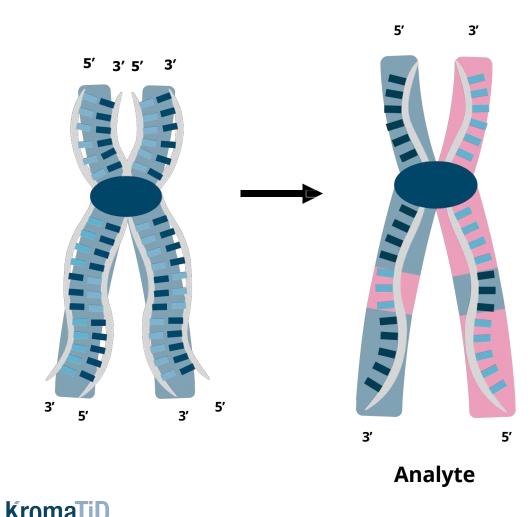
Plasmid Manufacturing <u>Services</u>

How are others using KromaTiD?

Chromosome rearrangements and genomic structural measurements

Genome Engineering	Cell Line Selection	Genome Structure
Research Process Development Preclinical/Clinical	Genome integrity Cell line QC	Structural biomarker discovery Structural target discovery Biodosimetry
Development		

What is dGH SCREEN[™] Technology?


dGH SCREEN[™] is a 5-color whole-genome karyotyping technology, using single-cell measurement of structural variations.

It is an unbiased assay, utilizing whole-genome tools to assess risks and help accelerate gene therapies to market.

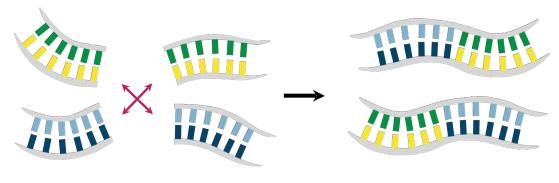
www.kromatid.com

Direct and Robust Visualization of the Genome


dGH chromosomes contain **2 strands** of oppositely oriented, **parental DNA only**—NO daughter strands

Single-stranded probes are designed to **target only the Watson strand** and onlyunique sequences.

Process


- 1. Grow cells through one cell cycle
- 2. Incorporate analog during replication
- 3. Strip daughter strands
- 4. Hybridize with proprietary single stranded probes
- 5. Image and analyze

Williams, E., & Bailey, S. (2009). Chromosome Orientation Fluorescence In Situ Hybridization (CO-FISH)

Sequence Variation Requires Structural Context

Mis-repair: Structural Variation

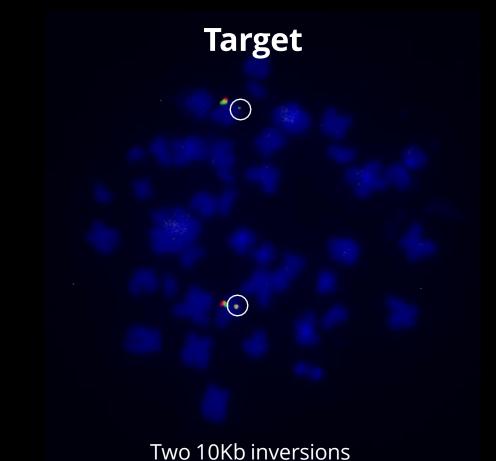
Structural Variant

Mis-Edit: Sequence Variation

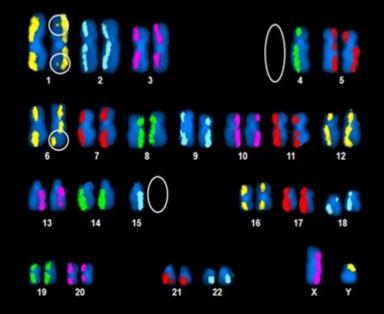
am→ un -

Single Nucleotide Variant

dGH is the Structural Ground Truth



Bioinformatic Structural Hypothesis

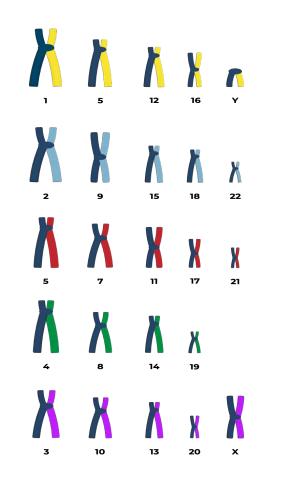


Measuring all aberrations with two orthogonal and complementary methods

Visualizing Genomic Structure with dGH[™]

Discovery

Three inversions and two missing chromosomes


kromaTiD Direct, Definitive Genomics

dGH in-Site™

(localized)

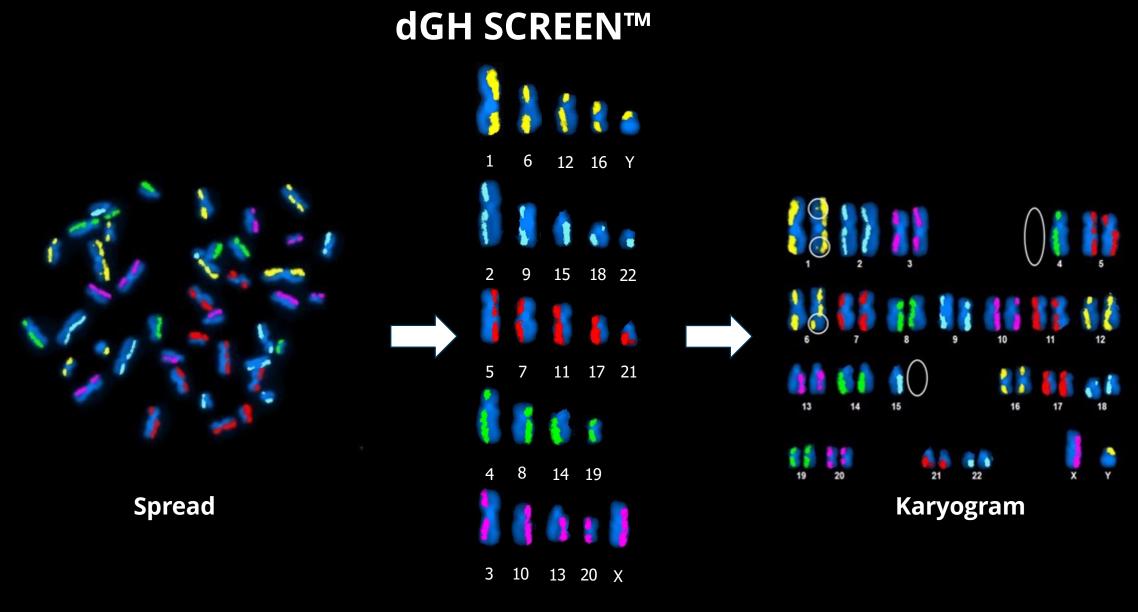
dGH SCREEN™ (unbiased)

dGH SCREEN™: 5-Color, Whole-Genome Karyotyping

dGH SCREEN:

- Whole genome
- Single-cell
- All classes of structural rearrangements
- Chromosomal identification

KromaTiD Direct, Definitive Genomic


What you get with dGH SCREEN™

Overall rates of structural events >5 kb in size Distribution of events per chromosome Distribution of events or combinations of events across the population

Types of events detected

- Translocations
- Inversions
- Aneuploidy
- Insertions
- Chromatid-type aberrations (truncation, fusion, chromatid breaks)
- Complex exchanges
- Chromothrypsis and chromosome fragmentation

Sorting

3 Use Cases

Three Mile Island Project

Analysis of blood lymphocytes from human subjects

Collaboration with University of Texas Medical Branch

Analysis of clones from an established cell line exposed to several different sources of radiation

NIST Genome Editing Consortium

Analysis of the "Genome in the Bottle" cell line

www.kromatid.com

dGH SCREEN[™] for Biodosimetry

Three Mile Island Project

The Three Mile Island accident was a partial meltdown of the Three Mile Island, Unit 2 reactor in Pennsylvania, United States.

It began at 4 a.m. on March 28, 1979. It is the most significant accident in U.S. commercial nuclear power plant history.

- Use Case for **genomic structural event rate assessment** as a biodosimeter for radiation exposure.
- Model system for using dGH SCREEN to measure the effects of a genotoxic exposure
- Analogous to measuring off-target effects in a gene editing system

Traditional Measures of Biodosimetry

Metaphase spread from an irradiated human peripheral blood sample hybridized using dGH

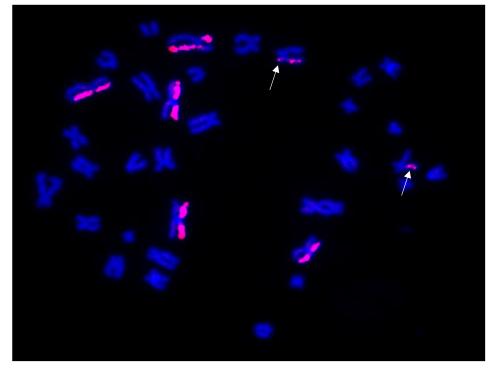


Figure 1: Whole chromosome 1, 2 and 3 paints hybridized to a metaphase spread from a human peripheral blood sample irradiated with 2Gy Cs-137 gamma rays. Structural rearrangements identified by Directional Genomic Hybridization denoted by arrows.

Inversions occur at a higher background frequency and increase at a greater rate per unit dose compared to translocations

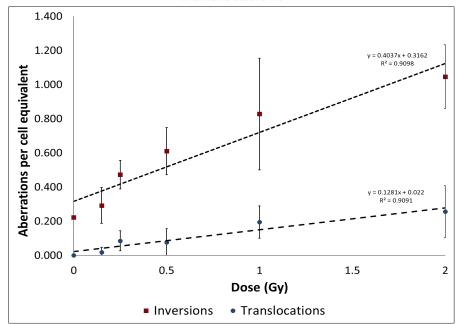
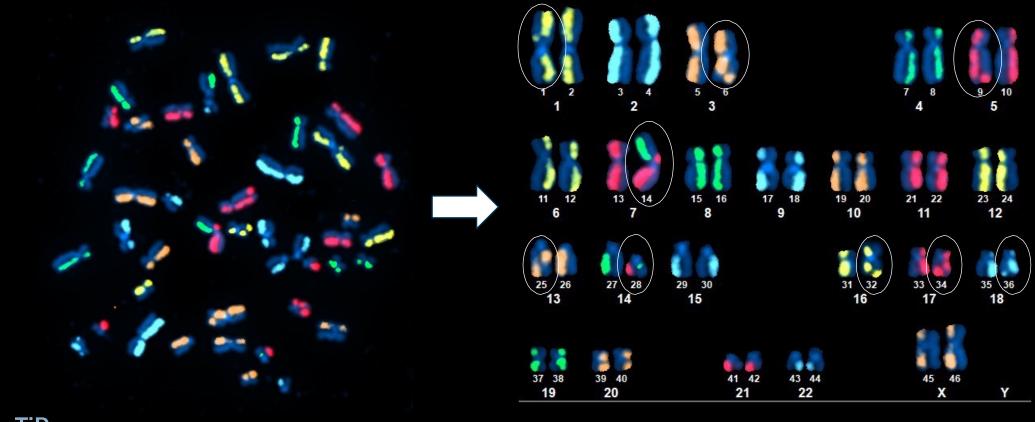
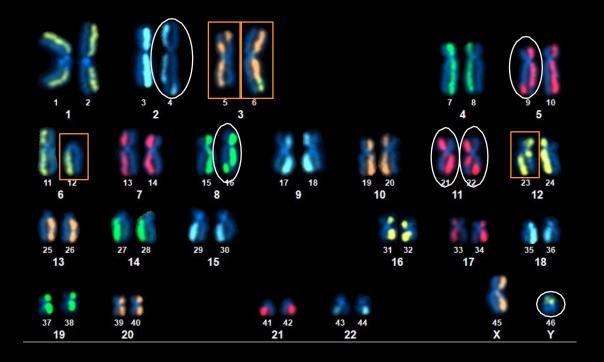
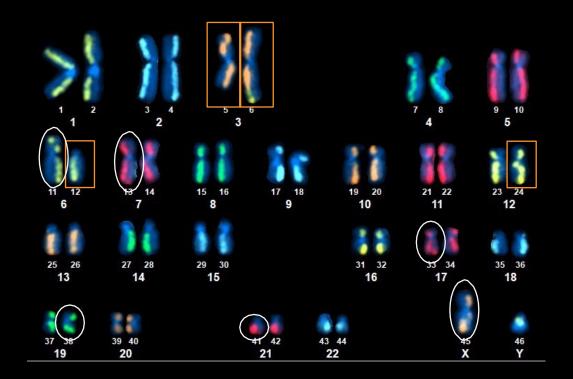



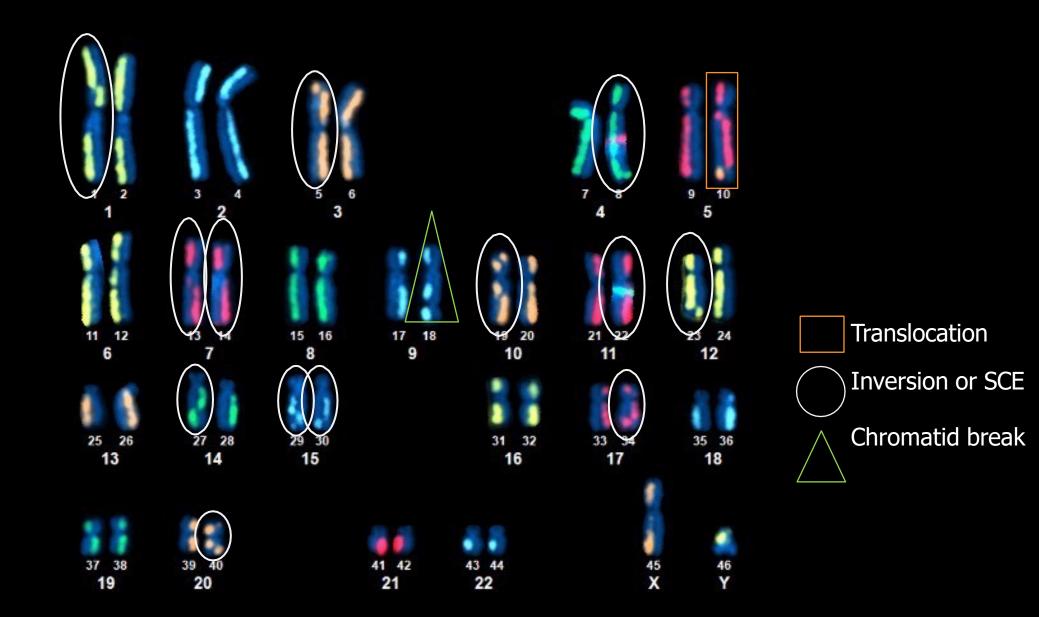
Figure 2: Blood samples from young adult controls were irradiated with Cs-137 gamma rays to establish a dose response (calibration) curve. Males in their mid-20's were selected to account for age at exposure. Inversions (red) had a higher natural background rate compared to translocations (blue); however, inversions formed at a higher rate per unit dose.


McKenna MJ, Robinson E, Taylor L, et al. Chromosome Translocations, Inversions and Telomere Length for Retrospective Biodosimetry on Exposed U.S. Atomic Veterans. Radiation Research. 2019 Apr;191(4):311-322. DOI: 10.1667/rr15240.1. PMID: 30714852; PMCID: PMC6492561.


Preliminary SCREEN™ Data

KromaTiD Direct, Definitive Genomics

Measuring Recurrent Translocations and Inversions



Random

dGH SCREEN™ Data

Kromatid Direct, Definitive Genomics

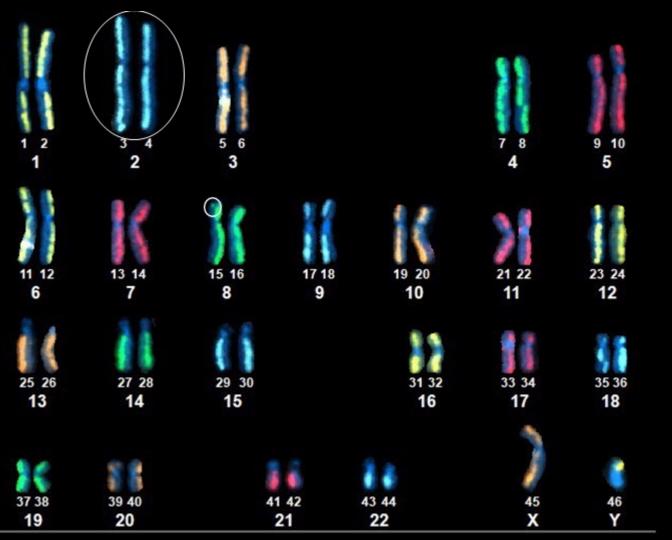
dGH SCREEN[™] for Cell Line QC

Whole genome dGH analysis and stability screen of the "Genome in a Bottle" progenitor cell line in preparation for engineering of large variant controls by NIST partners

GM.	2438	35			LCL from B-L	ymphocyte
Descr Affect Sex: Age:	iption: ed:	Unkno Male	DNAL GENOME F own (At Sampling)	PROJECT		٥
Overview	Characte	rizations	Phenotypic Data	Publications	Culture Protocols	e
Remar	Blue r hemai from l	ubber ble ngioma; r .CL) and (eb nevus syndrom nigraine with aura	e; central sero ; narcolepsy; ell from PBMC	e Project: http://www.personalge ous chorioretinopathy; cystoid ma sleep paralysis; same subject as (); mother is GM24143 (Lymph) ar	acular degeneration; GM26105 (stem cell

Previous GM24385 Genome Structural Characterization:

Karyotyping (Coriell):


- Primarily diploid
- Potential inversion on 3q26.3q29

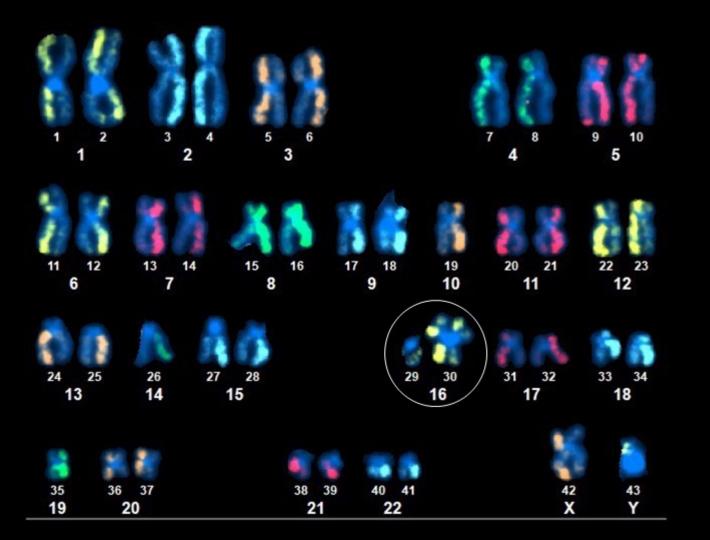
Sequencing (GiaB Consortium):

- Numerous large CNVs
- No inversion or translocation variant calls

Whole chromosome dGH on C3 (Kromatid)

- Confirmed inversion on 3q26.3q29
- Discovered telomeric inversion on 3q
- Discovered centromeric inversion on 3q

GM24385 p12


Structural Variant Summary*

- 4 translocations (heterogenous)-8% of cells
- 34 inversions of > 8% occurrence
- 18% variable monosomy
- 4% variable trisomy
- Low level of complex events, including one cell with chromothripsis of Chr 19, one cell will whole arm deletion of Chr 19, two cells with chromatid-type breaks of Chr 3, and two cells with centromere abnormalities (Chr 9 and Chr 11)

Other observations

Likely condensation defect (observed in 62% of cells)

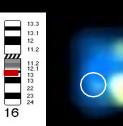
GM24385 p18

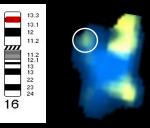
Structural Variant Summary*

- 4 translocations (random), Chr 16 involved in 2 of the 4 translocations
- 10 inversions (events seen in >8% of cells)
- Likely condensation defect presenting as a size difference between homologs observed in 93% of cells, often involving more than one chromosome.
- 41% variable monosomy
- 5% variable monosomy

Complex Rearrangements:

- Elevated rate of complex events in Chromosome 16. Large deletions, radial whole-arm gain, chromothripsis, decondensation and centromere "spindling" observed in 41% of cells
- Centromere abnormalities were also frequently observed in Chr 1 and Chr 9.

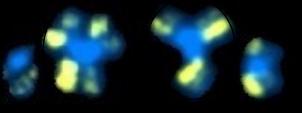

Chr 16 Complex Structural Variation in p18 indicates cell line transformation, instability


Chr 16q Inversion (37%)

- Small, mid-arm
- Observed in 19% of cells

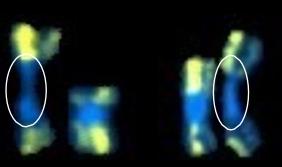
Chr 16p Inversion

- Small, mid-arm
- Observed in 19% of cells



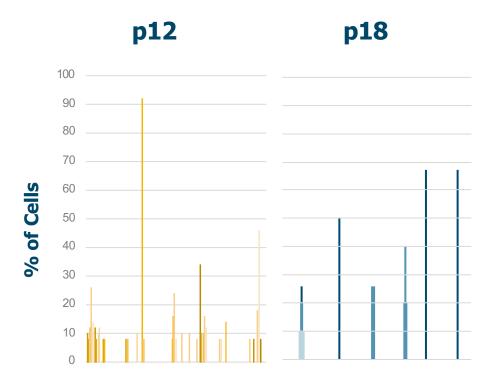
Whole arm deletion

• Observed in 11% of cells



Chr 16 translocations (~4%)

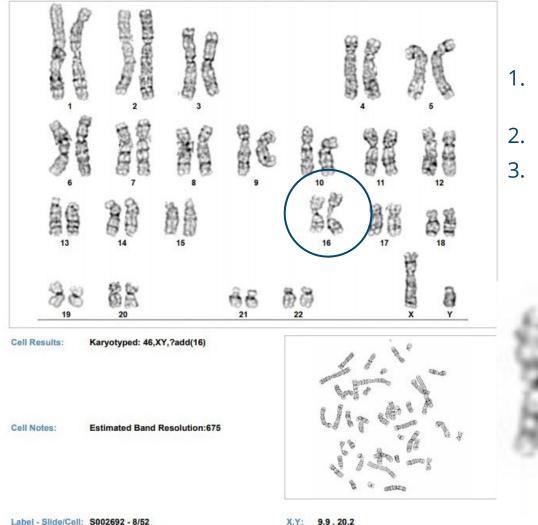
- Non-reciprocal, balanced and unbalanced
- Partners Chr7 and Chr10



Decondensed/ elongated centromeres and isochromosomes • Observed in 22% of cells

Structural Variation in Chromosome 16 observed in 41% of cells

Inversions

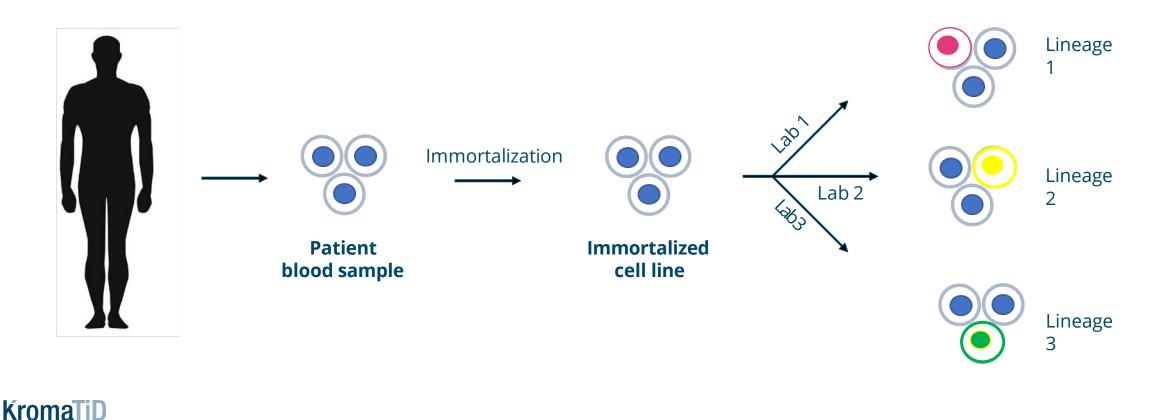

Inversion frequency by chromosome

KromaTiD Direct, Definitive Genomics

Inversions seen in both passages:

Chromosome	Description
8	p-arm, mid size, p22-p21 region
12	q-arm, mid-size, possibly two small inversions in close proximity, q13-q15 region
12	q-arm, small, near telomere, q24 region
16	p-arm, small, mid arm, p13-p12 region
16	q-arm, small, mid-arm, q13-q22 region
19	q-arm, mid-size, near centromere, q12-q13.2 region
Х	q-arm, small, near telomere, q27-q28 region

G-banding Confirms Gross Chr16 Result

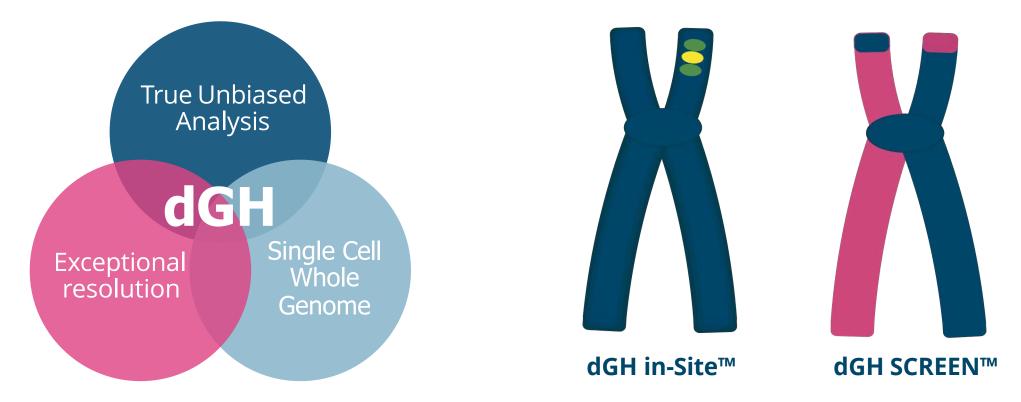

KromaTiD

I. Some rate of potential condensation defects were observed

- 2. None of the recurrent inversions were detected
- 3. Instability and gross rearrangement of C16 matched dGH SCREEN observations

46,XY,chbr(1)(q10)[1]/ 46,XY,dic(16;17)(p13.2;p13),?add(16)(p)[1]/ 46,XY,del(16)(q10),?add(16)(p)[2]/ 46,XY,?add(16)(p)?iso(16)(q10)[5]/ 46,XY[11]

Parallel studies with inherently unstable cell lines



Direct, Definitive Genomics

www.kromatid.com

directional Genomic Hybridization™

An unbiased, whole genome, single cell toolset. Map genomes, identify structural variation, and profile structural heterogeneity

We gratefully acknowledge NASA and the NHGRI for providing development funding and support for dGH SCREEN[™].

www.kromatid.com

dGH SCREEN™ Services Pricing

SKU	Product Description	List Price
SCR-001	SCREEN Culture Development: Thaw, recovery, and harvest optimization	\$1,500.00
SCR-002	SCREEN Assay Execution and Analysis: Imaging and scoring for 50 spreads/sample	\$5,775.00
SCR-003	SCREEN Assay Execution and Analysis: Imaging and scoring for 20 spreads/sample	\$3,465.00
SCR-004	SCREEN Assay Execution and Analysis: Imaging and scoring for 100 spreads/sample	\$10,395.00
SCR-005	T-Cell: Thaw, recovery, and harvest optimization	\$1,625.00
SCR-006	IPSC: Thaw, recovery, and harvest optimization	\$1,750.00
SCR-007	Whole Blood: Thaw, recovery, and harvest optimization	\$1,250.00
SCR-008	SCREEN Metaphase Adherent/Suspension Prep and Harvest	\$1,500.00
SCR-009	SCREEN T Cells Metaphase Prep and Harvest	\$1,625.00
SCR-010	SCREEN IPSC Metaphase Prep and Harvest	\$1,750.00
SCR-011	SCREEN Whole Blood Metaphase Prep and Harvest	\$1,250.00
SCR-012	dGH SCREEN™ Chr1p E-Banding mini-Analysis on 100 existing cells	\$1,050.00
SCR-013	SCREEN™ NK Cells Metaphase Prep and Harvest	\$1,625.00
SCR-014	SCREEN™ NK Cell Culture Development: Thaw, recovery, and harvest optimization	\$1,625.00

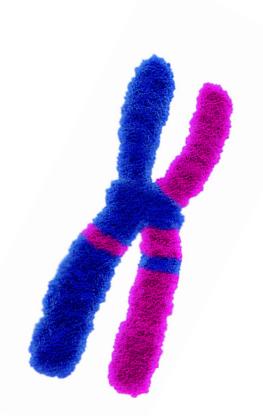
Working with KromaTiD is Simple

Example workflow with KromaTiD running in-Site[™] or alternative assays on engineered lines in-house.

KromaTiD is committed to **collaborative excellence** through dedicated project management and **expert technical analysis**.

Why You Win With Us

Collaboration: The trusted structural genomics partner for leading gene therapy innovators


Performance: Gold standard products for the measurement of genomic structure and structural variation

Scalability: End to end process automation, high-throughput analysis, AI meta-analysis

Excellence: Experienced team of 20 operating today in a world class, 11,000 square foot genomics facility

Proprietary: Issued patents, broadened applications, trade secret methods, proprietary bioinformatics

Thank you!

For Research Use Only. Not for use in diagnostic procedures.

to inquire and for orders visit: kromatid.com or contact: sales@kromatid.com

www.kromaTiD.com