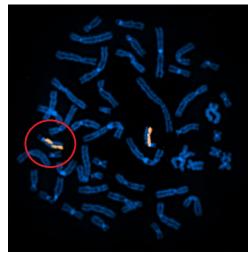


CAR T and many more cell types.

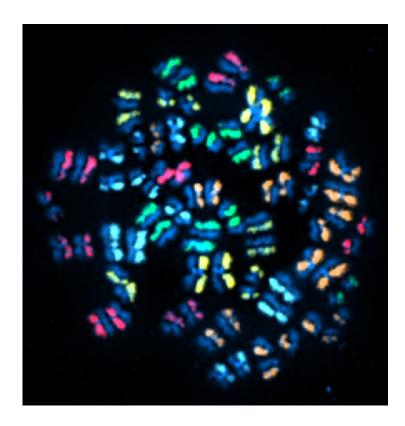
Monitor Structural Variants and Genomic Stability with dGH SCREEN™ Assays


directional Genomic Hybridization™ Single-Cell
Rearrangement Event Evaluation and Numbering
(SCREEN) is a single-cell assay designed to monitor structural variants throughout the genome in an unbiased fashion. By utilizing directional Genomic Hybridization technology, combined with strategic labeling patterns and chromosomal morphologies, dGH SCREEN™ provides the most comprehensive and high-resolution karyographic analysis available. dGH SCREEN™ is designed to discover and quantify structural variants within heterogeneous cell populations and can be used to analyze blood derived cells, cell lines, iPSCs,

Above: dGH SCREEN™ detects multiple structural rearrangements in a metaphase cell from a genetically modified (GM) cell line.

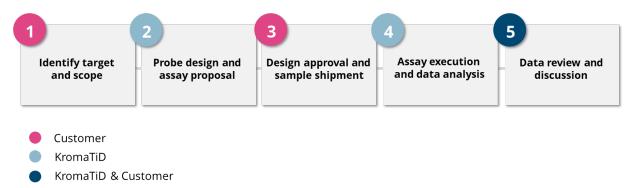
Key analytic features of dGH SCREEN™ Assay Services

- Exchange events including reciprocal, balanced and allelic translocations
- Orientation events including inversions, recombination and sister chromatid exchanges
- Chromosomal gain and loss events, including sister chromatid fusions, dicentrics and acentrics, fragmentation and chromothripsis, polypoidy, aneuploidy, monosomy and polysomy
- Rearrangements as small as 5 kb have been detected.



Above: Inversion / sister chromatid exchange in chromosome 13 detected by dGH SCREEN™ in a GM cell line.

Applications of dGH SCREEN™ Assay Services


- Monitor cellular engineering outcomes
 - Genome-wide, cell-by-cell and chromosome-by-chromosome assessment of structure, pre- and post-modification
- Orthogonal data for sequencing
 - Genome-wide, confirmatory data regarding rearrangements predicted with long read and other NGS analyses
- Structural integrity for quality control
 - Measure the relative stability of cell lines.
 - o Screen and compare candidate cell lines, based on total genomic structural variation metrics.
- Genomic stability assessment
 - o Track persistence of variants over time, passages, and process variable changes.

Left: Endoreduplication indicating possible genomic instability detected with dGH SCREEN™ in a lymphoblastoid cell line.

Working with KromaTiD is Easy!

Our expert team of scientists collaborate closely with you from start to finish to ensure the highest quality data and best service experience possible.

Cat. No.	Product Description	List Price
SCR-003	dGH SCREEN™ Assay Execution and Analysis: Imaging and scoring for 20 spreads/sample	\$3,465.00
SCR-002	dGH SCREEN™ Assay Execution and Analysis: Imaging and scoring for 50 spreads/sample	\$5,775.00
SCR-004	dGH SCREEN™ Assay Execution and Analysis: Imaging and scoring for 100 spreads/sample	\$10,395.00
SCR-005	T-Cell Culture Development: Thaw, recovery, and harvest optimization	\$1,625.00
SCR-009	dGH SCREEN™ T Cells Metaphase Prep and Harvest	\$1,625.00
SCR-006	IPSC Culture Development: Thaw, recovery, and harvest optimization	\$1,750.00
SCR-010	dGH SCREEN™ IPSC Metaphase Prep and Harvest	\$1,750.00
SCR-007	Whole Blood Culture Development: Thaw, recovery, and harvest optimization	\$1,250.00
SCR-011	dGH SCREEN™ Whole Blood Metaphase Prep and Harvest	\$1,250.00
SCR-014	NK Cell Culture Development: Thaw, recovery, and harvest optimization	\$1,625.00
SCR-013	dGH SCREEN™ NK Cells Metaphase Prep and Harvest	\$1,625.00

For more information on how KromaTiD can transform your research, contact: sales@kromatid.com