

Document Code:	FORM-0118A	Document Type:	FORM		
Revision:	1.0				
Sample:	[sample name]				

TITLE: KromaTiD dGH SCREEN Whole Genome Analysis Report

Author	Erin Cross	
Reviewed By	Greg Husar	
Approved By	Gretchen Pratt	

I. PROJECT INFORMATION

Project Quote #	Q23xxxx
Sample Type	Cell type
Sample ID	S01xxxx, [sample name]
Gender	Female
Passage number (or N/A)	N/A
Study Objective	Assessment of genomic integrity
Sample Receipt Date	8/xx/23
Report Date	8/xx/23

I. CHROMOSOME HARVEST

Harvest is performed per SOP-0044.

Condition	Result
Analog incubation time:	27 hrs
Colcemid incubation time	Performed by customer
Harvest Option	Standard Protocol: X
That vest option	Modified Conditions: N/A

Document Code:	FORM-0118A	Document Type:	FORM		
Revision:	1.0				
Sample:	[sample name]				

II. dGH SCREEN ASSAY

Assay	Standard dGH SCREEN AS-0002.1 (50 Cells)
Metaphase and Karyotype Qualification	Samples must be prepared and qualified for dGH analysis prior to running the assay. dGH SCREEN is designed for samples with grossly normal karyotypes and has not been qualified for highly rearranged genome analysis.
	Spread resolution of 350+ (G-band equivalent) is selected for analysis.
Assay Description	The five-color whole genome assay (5CWG or dGH SCREEN) is a dGH paint combination assay for all 24 human chromosomes.
	The assay is composed of unique sequence, high-density (HD) dGH chromosome paints in five color panels such that chromosomes painted in the same color can be differentiated by size, shape, and centromere position.
	Results include per-chromosome attribution of inter- and intra-chromosomal structural events including inversions, translocations, aneuploidy (gain and loss), insertions, centromere abnormalities and complex events across a sample.
	Prior to analysis, images of dGH SCREEN painted metaphase spreads are qualified, processed and sorted into karyograms for rapid, consistent reading of the assay.
	Per-cell event assessment is performed in an excel workbook which is built to be leveraged for population-level analysis of events ranging from random to clonal.

Document Code:	FORM-0118A	Document Type:	FORM		
Revision:	1.0				
Sample:	[sample name]				

III. RESULTS

Cells	50	Total Karyograms	50
Analyzed	30	Total Karyograms	50

Chromosome Aberration Data:

Table 1: Structural Events

Event	Number of Events	Number Of Cells with Events				
Gain	0	0				
Loss	6	4				
Inversion	41	32				
SCE	211	49				
Insertion	0	0				
Size Diff	146	46				
Translocations	0	0				
Complex	6	5				
Total	410	50				

Document Code:	FORM-0118A	Document Type:	FORM
Revision:	1.0		
Sample:	[sample name]		

Table 2: Distribution of Events by Chromosome

	Count of Events by Chromosome																									
Chromosome	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	X	Υ	Number of Events	Number of Cells w/ Events
Gain	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Loss	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	0	0	1	1	1	0	0	6	4
Inversion	0	2	1	1	1	0	2	27	1	2	0	0	2	0	0	0	0	1	0	0	0	0	1	0	41	32
SCE	20	19	15	21	10	15	9	8	11	10	11	8	12	6	3	3	5	6	3	1	1	2	12	0	211	49
Insertion	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Size Diff	16	17	11	12	10	15	9	0	10	5	7	7	1	1	3	3	3	4	3	2	0	0	7	0	146	46
Translocations	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Complex	1	1	1	0	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	6	5
Total	37	39	28	34	22	31	20	35	22	17	19	16	15	8	7	6	8	11	6	4	2	3	20	0	410	50

Document Code:	FORM-0118A	Document Type:	FORM		
Revision:	1.0				
Sample:	[sample name]				

Figure 1: Distribution of Event Rates by Number of Cells

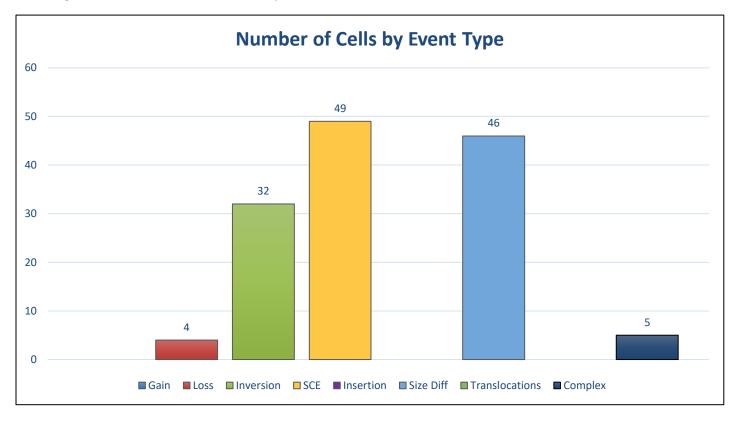


Table 3: Aneuploidy Summary (whole chromosome gain and loss)

	Number of Cells	Percentage of Cells
Gain Event	0	0%
Loss Event	4	8%

Table 4: Aneuploidy detail, by chromosome identity and cell number.

Location	Cell Name	Event	Gain Loss Values
Cell 16 / Chrom-12	Cell 16	Loss	-1
Cell 16 / Chrom-15	Cell 16	Loss	-1
Cell 22 / Chrom-21	Cell 22	Loss	-1
Cell 23 / Chrom-22	Cell 23	Loss	-1
Cell 33 / Chrom-11	Cell 33	Loss	-1
Cell 33 / Chrom-20	Cell 33	Loss	-1

Document Code:	FORM-0118A	Document Type:	FORM
Revision:	1.0		
Sample:	[sample name]		

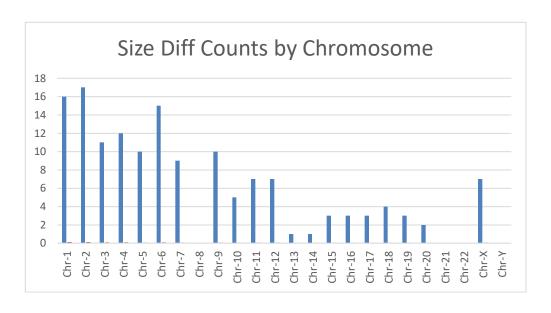
Table 5: Inversion and Sister Chromatid Exchange Event Summary

version/SCE vent Counts			I	P-Arm	1			ion			(Q-Arm	1			
by	Ir	versio	n	Ex	kchang	ge		ivers	In	versio	n	Ex	kchang	ge		
nromosome	Centric	Mid-Arm Mid-Size	Mid-Arm Small	Large Sister Chromatid	Mid-Sized Sister Chromatid	Small Sister Chromatid	Terminal Inversions	Pericentric Inversion	Centric Small	Mid-Arm Mid-Size	Mid-Arm Small	Large Sister Chromatid	Mid-Sized Sister Chromatid	Small Sister Chromatid	Terminal Inversions	Grand Total
1	0	0	0	3	8	2	0	1	0	0	0	1	5	0	0	20
2	0	0	0	2	6	0	0	0	0	1	1	4	7	0	0	21
3	0	0	0	0	8	1	0	0	0	1	0	2	4	0	0	16
4	0	0	0	0	4	1	0	1	0	1	0	3	12	0	0	22
5	1	0	0	0	5	0	0	1	0	0	0	2	2	0	0	11
6	0	0	0	0	1	1	0	0	0	0	0	2	11	0	0	15
7	0	1	1	0	3	0	0	0	0	0	0	2	4	0	0	11
8	0	0	27	0	0	1	0	0	0	0	0	0	7	0	0	35
9	0	0	1	0	4	0	0	1	0	0	0	0	4	2	0	12
10	0	0	2	0	2	0	0	0	0	0	0	0	7	1	0	12
11	0	0	0	0	3	1	0	0	0	0	0	2	5	0	0	11
12	0	0	0	0	2	0	0	0	0	0	0	1	5	0	0	8
13	0	0	0	0	0	0	0	0	1	1	0	3	9	0	0	14
14	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0	6
15	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3
16	0	0	0	0	1	0	0	0	0	0	0	0	2	0	0	3
17	0	0	0	0	1	0	0	0	0	0	0	1	3	0	0	5
18	0	0	0	0	0	0	0	0	0	0	1	1	5	0	0	7
19	0	0	0	0	2	0	0	0	0	0	0	0	1	0	0	3
20	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
21	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
22	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	2
X	0	0	1	0	2	2	0	1	0	0	0	2	5	0	0	13
Υ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	1	1	32	5	52	9	0	5	1	4	2	26	110	4	0	252
Inversion Total	1	1	32				0		1	4	2				0	41

Document Code:	FORM-0118A	Document Type:	FORM
Revision:	1.0		
Sample:	[sample name]		

Recurrent SCE/Inversion Event Summary

There is a recurrent small inversion on Chr8p present in 54% of cells.


Table 6: Insertion Event Summary

There are no insertion events in the sample.

Table 7: Translocation Event Summary

There are no translocation events in the sample.

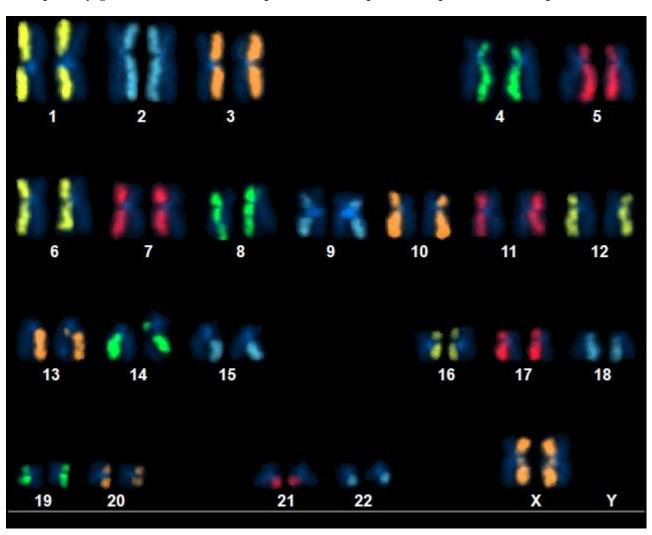
Table 8: Size Difference Summary:

Complex Events:

There were four cells that each contained a single complex event, and one cell with two events.

Table 9: Complex Events Summary:

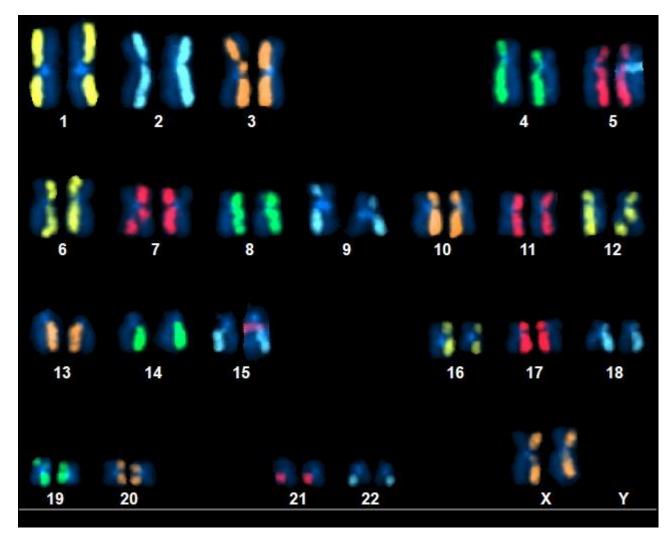
Cell	Chromosome	Complex Event	Code
4	3	Broken chromosome	C4
15	2	Broken chromosome	C4
28	1	Broken chromosome	C4
28	5	Whole arm deletion	C1
34	14	Broken chromosome	C4
43	6	Broken chromosome	C4



Document Code:	FORM-0118A	Document Type:	FORM
Revision:	1.0		
Sample:	[sample name]		

Interpretation / Significance:

Sample karyotype is diploid with aneuploidy observed in 8% of cells. Aneuploidy observed was loss of a single chromosome homolog. Random SCE and inversion events (events that do not appear repeatedly in over 30% of cells) were seen at the highest prevalence. The sample had no insertions or translocations. There is a recurrent small inversion on Chr8p present in 54% of the cells. There were six complex events that all involved major structural changes to the impacted chromosome.


Figure 2: Example Karyogram. There are SCE events present on Chr13q and Chr14q. Chromosome 14q has a broken chromatid.

Document Code:	FORM-0118A	Document Type:	FORM
Revision:	1.0		
Sample:	[sample name]		

Figure 3: Example Karyogram. There are SCE events present on Chr3p, Chr7q, Chr12q, and Chr19p. Size difference between homologs is observed for Chr4, Chr9, Chr15, and Chr19. The recurrent small inversion on Chr8p is present. Chr3p has a broken chromatid. Note that the aqua color on Chr5 and the pink on Chr15 are due to an overlap in the metaphase spread.

dGH SCREEN 5-Color Whole Genome Assay is for research use only and is not a medical diagnostic test.